402. The Magnitude of the Solvent Effect in Dipole-moment Measurements. Part I. The Polarisation of Carbon Tetrachloride Solutions.

By F. R. Goss.

The diclectric polarisation of polar substances in solution is known to differ from the same polarisation measured in the vapour state by amounts which are described in gencral as " solvent effects." It is already known that these are connected with the electrical anisotropy of the solvent, the concentration, anisotropy, and degree of association of the solute, and any chemical reaction which may occur between solvent and solute.

It is now shown that for certain solutions of polar substances in the isotropic solvent, carbon tetrachloride, the variation in the partial molar polarisations $\left(P_{s}\right)$, obtaincd by the method of intercepts from the polarisations (P_{12}) of the mixtures, can be expressed as a function of the dielectric constant ε in the form

$$
P_{\mathrm{B}}=P_{\mathrm{E}+\AA}+Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}+Y / \varepsilon
$$

Herc Y and Z are molar quantities whose ratios (Y / P_{0} and $Z / P_{\mathbf{E}+\mathrm{A}}$) to the orientation and to the distortion polarisations respectively are, in the same way as $\left(P_{\infty}-P_{\mathrm{R}+\mathrm{A}}\right) / P_{0}$, a measure of the modification of the magnitude of the polarisation by the anisotropy. These quantitics are found to be related by the formula

$$
\left(Y / P_{\mathrm{o}}-1\right) /\left[\sqrt[4]{\left(Z+P_{\mathrm{E}+\mathrm{\Lambda}}\right) / P_{\mathrm{E}+\mathrm{\Lambda}}}-1\right]=3.25
$$

by means of which the solvent effects due to anisotropy and change of concentration may readily be defined and calculated.

Values for the dipole moment obtained by means of these formulæ from suitable experimental data are in satisfactory agreement with those given by the vapour measurements.

Following the successful interpretation (J., 1933, 1341) of the temperature variation of the polarisation of certain non-polar liquids in terms of dielectric anisotropy, an attempt was made (J., 1934, 696, 1467) to find a theoretical basis for Sugden's relation (Nature, 1934, 133, 415)

$$
\begin{equation*}
P_{2}=P_{\mathrm{E}+\mathrm{A}+\mathrm{O}}+\alpha-P_{\mathrm{O}}(\varepsilon-1) /(\varepsilon+2) . \tag{1}
\end{equation*}
$$

for the dielectric polarisation P_{2} of one component of a liquid mixture in terms of the total and the orientation polarisation, $P_{\mathrm{E}_{+}+\mathrm{A}}$ and P_{O}, of the same substance in the state of vapour, and the dielectric constant of the mixture, the term α being obtained experimentally. This simple formula was found to require modification (cf. J., 1935, 502) when applied to mixtures of carbon tetrachloride and nitrobenzene fan example chosen both for the isotropic nature of the non-polar solvent (cf. J., 1935, 727) and for the wide range covered by the values of ε in this case]. It was found that a close approximation to the experimental data is given by the expression

$$
\begin{equation*}
P_{2}=P_{\mathrm{E}+\mathrm{A}+\mathrm{O}}-B\left\{(\varepsilon-1) /(\varepsilon+2)+(\varepsilon-1)^{2} /(\varepsilon+2)^{2}\right\} . \tag{2}
\end{equation*}
$$

Unfortunately (1) and (2) are not generally applicable to mixtures of other liquids which have been examined, and it is evident that agreement between such formulæ and the data must be largely fortuitous because the values of P_{2} are calculated on the quite arbitrary assumption, due in the first place to Dcbye (Marx, " Handbuch der Radiologie," 1925, 6, 630), that the polarisation P_{1} of the other component is independent of the concentration c_{2}. This assumption admittedly leads to the correct value for the polarisation P_{∞} of the solute at infinite dilution ($c_{2}=0$), although considerable uncertainty must necessarily be introduced into the extrapolation because of the arithmetical difficulty involved in employing the expression (3) at small values of c_{2}.

$$
\begin{equation*}
P_{2}=\left(P_{12}-P_{1}\right) / c_{2}+P_{1} \tag{3}
\end{equation*}
$$

On the other hand, the values of P_{2} given by formula (3) for finite values of c_{2} will be wrong to the extent that Debye's assumption of the invariability of P_{1} is in error.

Orr and Butler (Nature, 1932, 130, 930) belicve that the intercept method * gives the partial polarisations of the components of a mixture at all concentrations, and in this communication an attempt is made to interpret the intercepts ($P_{\mathrm{S}_{1}}$ and $P_{\mathrm{S}_{2}}$) given by tangents to P_{12} curves at the axes where $c_{2}=0$ and 1 (see Fig. 1) in the expectation that they represent the partial polarisations more exactly than P_{1} and P_{2} obtained in the usually accepted manner.

As an example of the method, in Fig. l values of P_{12} for chlorobenzene (Table III) are plotted against c_{2}, and it will be seen that the tangent at the point where $c_{2}=0.47942$, one of the experimental points, gives the intercepts of $P_{\mathrm{S} 1}=33$ and $P_{\mathrm{S} 2}=65$ as the partial polarisations of carbon tetrachloride and chlorobenzene respectively at this concentration, whereas by (3) the values are $P_{1}=28$ and $P_{2}=70$.

Now, it is undoubtedly true that, since the intercepts may be read with almost equal accuracy at all concentrations, P_{∞}, which is the intercept given by the tangent at the point where $c_{2}=0$, is obtainable more accurately and more readily than by extrapolation

* The author is greatly indebted to Dr. W. Wild, who directed his attention to the possible application of this method to the interpretation of polarisation data.

Fig. 1.

Polarisation of chlorobenzene and carbon tetrachloride at 20°.

Fig. 2.

Partial molar polarisations at $20^{\circ} P_{\mathrm{s}}=P_{\mathrm{E} \mid \mathrm{A}}+Z(\epsilon-1)^{4} /(\epsilon+2)^{4}+Y / \epsilon$ extrapolated to $\epsilon=1$ and $\epsilon=\infty$.
of P_{2}. Further, it will be seen from the data given in Table I that the intercepts obtained from mixtures of carbon tetrachloride with several polar substances, each component being considered independently, can be expressed as a function of the dielectric constant :

$$
\begin{equation*}
P_{\mathrm{B}}=P_{\mathrm{E}+\mathrm{A}}+Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}+Y / \varepsilon \tag{4}
\end{equation*}
$$

The values of P_{S} given by (4), which are also given in Fig. 2, are seen to coincide with the actual intercepts except for minor deviations in the case of the higher concentrations of ethyl ether, nitrobenzene, and carbon tetrachloride; in the other four cases agreement is exact.

Table I.

$t=20^{\circ}$.							
c_{2}.	$P_{\text {S } 2 .}$.	$P_{\mathbf{B}_{1}}$.	$\underset{\text { by }}{P_{\mathrm{B}_{2}}[\text { calc. }} .$	c_{2}.	$P_{y_{2}}$.	$P^{\text {s }}$.	$\begin{gathered} I_{\mathbf{s}_{2}}[c \text { alc. } . \\ \text { by }(4)] . \end{gathered}$
$\begin{gathered} \text { Nitrobenzene }(\text { Pal, Phil. Mag., 1930, 10, 265) ; } \\ {\left[R_{L}\right]_{\mathbf{D}}=32 \cdot 7 ; P_{\mathbf{E}: \mathbf{\Lambda}}=\mathbf{3 4 \cdot 3 .}} \end{gathered}$				$\begin{aligned} & \text { C.hlorobenzene (see Table 111); } \\ & {\left[R_{\Sigma}\right]_{\mathrm{D}}=31 \cdot 2 ; P_{\mathbf{E}: \Lambda}=32 \cdot 8 .} \end{aligned}$			
0.00000	365	28.0	365	$0 \cdot 00000$	85	28.1	85
0.00985	337	$28 \cdot 1$	337	$0 \cdot 00806$	84	$28 \cdot 1$	84
0.02101	311	$28 \cdot 6$	310	0.01531	8.3	$28 \cdot 1$	83
0.03193	290	$29 \cdot 2$	288	0.03142	82	28.2	82
0.04686	264	$30 \cdot 4$	263	$0 \cdot 04812$	81	28.2	81
0.07064	232	32-5	231	0.08478	79	28.2	79
$0 \cdot 09586$	205	35	20.5	$0 \cdot 18906$	74	29	74
$0 \cdot 1527$	167	41	168	$0 \cdot 47942$	65	33	66
$0 \cdot 2098$	143	47	144	$0 \cdot 89479$	62	39	62
0.3103	119	54	124	1.00000	61.8	40	61.8
$0 \cdot 4039$	109	59	112	Acetone (Earp and Glasstone, J., 1935, 1720) ;$\left[R_{\mathrm{L}}\right]_{\mathrm{D}}=16 \cdot 1 ; P_{\mathrm{E}: \mathrm{A}}=16 \cdot 9 .$			
0.5001	103	64	105				
0.5917	99	68	102				
0.7166	96	72	98	$0 \cdot 00000$	188	28.3	188
$0 \cdot 8046$	95	75	97	0.04186	161	29	161
$0 \cdot 8936$	$94 \cdot 7$	78	95	$0 \cdot 09496$	136	31	136
$1 \cdot 0000$	94-5	80	$94 \cdot 5$	$0 \cdot 20665$	104	36	104
Ethyl benzoate (see Table III);$\left[R_{L}\right]_{\mathrm{D}}=42.6 ; \Gamma_{\mathrm{E}_{i} \mathrm{~A}}=44.7$				0.35814	82	46	81
				0.57880 0.75685	70 66	54 61	70 665
0.00000	124	28.1	124	${ }_{0} \cdot 89866$	64	66	64
$0 \cdot 00645$	123	$28 \cdot 1$	123	$0 \cdot 97431$	64	68	64
0.01351	122	$28 \cdot 1$	122	$1 \cdot 00000$	63.9)	68	63.9
0.03413	119	$28 \cdot 2$	119	Lithyl ether (Earp and Glasstone, J., 1935, $1709) ;\left[R_{L}\right]_{\boldsymbol{v}}=22.5 ; P_{\mathrm{E}+\Delta}=23.6$.			
0.05252	116	$28 \cdot 4$	116				
$0 \cdot 06868$	114	28.5	114				
$0 \cdot 10835$	109	29	110	0.00000	62	28.3	62
$0 \cdot 18000$	103	30	104	0.03862	61	28.3	61
0.41006	94	34	94	0.06053	60	28.4	60
0.67061	91	38	91	$0 \cdot 11003$	59	28.5	59
1.00000	$89 \cdot 8$	42	89.8	0.15809	58.5	28.6	58.5
Methylene chloride (Morgan and Lowry, J. Physical Chem., 1930, 34, 2.385);$\left[R_{L}\right]_{\mathrm{D}}=16 \cdot 3 ; P_{\mathrm{E} ; \mathrm{A}}=17 \cdot 1$				$0 \cdot 20399$	57.7 57.2	28.7 28.8	57.7 $56 \cdot 8$
				0.26413 0.32161	$57 \cdot 2$ 56.8	28.8 29.0	56.8 56.0
				0.44406	$56 \cdot 2$	29.4	54.9
0.00000	70	$28 \cdot 2$	70	0.48548	$56 \cdot 1$	$29 \cdot 5$	$54 \cdot 6$
0.25000	57	30	57	$0 \cdot 58144$	$\check{55.7}$	30	$54 \cdot 1$
1.00000	$46 \cdot 8$	53	$46 \cdot 8$	0.70024	$55 \cdot 3$	31	$54 \cdot 0$
				0.81740	$55 \cdot 0$	33	$54 \cdot 1$
				$0 \cdot 90979$	$54 \cdot 8$	34	$54 \cdot 4$
				$1 \cdot 00000$	$54 \cdot 7$	35	$54 \cdot 7$

The values of Z and Y for the seven substances investigated are given in Table II, and it will be seen that they are the intercepts (less $P_{\mathrm{E}+\mathrm{A}}$) given by expression (4) on the P_{S} axis where $\varepsilon=\infty$ and 1 , or, more conveniently for graphical representation, where $1 / \varepsilon=0$ and 1. For carbon tetrachloride, $Y=0$, and it follows that $Z(\varepsilon-1)^{4} /(\varepsilon+2)^{4}$ is an additional term in the distortion polarisation of the liquids involved in these solutions, and hence that Y / ε is their orientation polarisation. When $\varepsilon=\varepsilon_{1}$ (ε_{1} being the dielectric constant of the non-polar component) and $P_{\mathrm{S}}=: P_{\infty}$, as in the infinitely dilute
solution, or, for carbon tetrachloride, as in the pure liquid (here $P_{\mathrm{s}}=P_{1}$), the second term of the expression (4) is negligible, so that

$$
\begin{equation*}
Y / \varepsilon_{1}=P_{\infty}-P_{\mathrm{E}+\mathrm{A}} \text { (approx.) } \tag{5}
\end{equation*}
$$

Further examination of the data shows that within the limits of experimental error

$$
\begin{equation*}
\left(Y / P_{\mathrm{O}}-1\right) /\left[\sqrt[4]{\left(Z+P_{\mathrm{E}_{+1} \mathrm{~A}}\right) / P_{\mathrm{E}+\mathrm{A}}}-1\right]=3.25 \tag{6}
\end{equation*}
$$

Even in the case of carbon tetrachloride, where both Y and P are zero, this ratio can be calculated by making use of the relation between ($\left.l_{\infty}^{\prime}-P_{E_{+1}}\right) / P_{0}$ and molecular symmetry elaborated by Higasi (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1936, 28, 284), from which it may be assumed that for an isotropic substance such as carbon tetrachloride, although both sides of the expression are zero, yet in the limit $P_{\infty}-P_{\mathrm{E}+\mathrm{a}}=P_{\mathrm{O}}$ and hence from (5), $Y / P_{\mathrm{O}}=\varepsilon_{1}$. Moreover, it follows from (5) that Y / P_{O} is very nearly ε_{1} times the ratio $\left(P-P_{\mathrm{E}+\mathrm{A}}\right) / P_{\mathrm{O}}$, which Higasi found to be connected with the relationship between the direction of the dipole and the direction and magnitude of the molecular axes. Thus $Y / \varepsilon_{1} P_{\mathrm{O}}$ and $Z / P_{\mathrm{E}+\mathrm{A}}$, which are listed in Table II, express the extent to which the orientation and the distortion polarisation respectively are modified by induction.

Table II.

			$t=20^{\circ}$.				
	2.	Y.	Value of (6).	$\frac{7}{\Gamma_{\mathrm{E}, \mathrm{~A}}}$	${\stackrel{Y}{\epsilon_{1}} \dot{P}_{0}}_{*}^{*}$	μ [calc. by (7)].	$\begin{gathered} \mu \\ \text { (vapour). } \end{gathered}$
Nitrobenzene.	56	733	$3 \cdot 49$	$1 \cdot 62$	$0 \cdot 84$	$4 \cdot 30$	$4 \cdot 23$
Chlorobenzene	64	115	$2 \cdot 93$	1.95	$0 \cdot 90$	1.65	1.69
Ethyl benzoate	104	176	$3 \cdot 54$	$2 \cdot 32$	0.94	1.99	1.95
Carbon tetrachloride	72	0	$3 \cdot 25$	$2 \cdot 61$	1.00	0	0
Acetone	50	383	$3 \cdot 08$	2.98	$1 \cdot 05$	$2 \cdot 79$	$2 \cdot 84$
Methylene chloride	59	118	$3 \cdot 04$	$3 \cdot 45$	$1 \cdot 11$	$1 \cdot 50$	1.53
Ethyl ether	154	84	3.08	6.51	$1 \cdot 40$	$1 \cdot 13$	1-14

P_{0} in (6) (col. 4) is the vapour value taken from the literature.
P_{0} in col. 6 is calculated by expression (7).

* This ratio is approximately the same as $\left(P_{\infty}-P_{\mathrm{E} \mid \mathbf{\Lambda}}\right) / P_{\mathbf{0}}$.

From the relation $\langle 6\rangle$ it follows that

$$
\begin{equation*}
P_{\mathrm{O}}=Y /\left[3 \cdot 25 \sqrt[1]{\left(\bar{Z}+\overline{P_{\mathrm{E}+\mathrm{A}}}\right) / P_{\mathrm{E}+\mathrm{A}}}-2 \cdot 25\right] \tag{7}
\end{equation*}
$$

whence the moment may be calculated in the usual manner. The values obtained are included in Table II with the comparable moments obtained from measurements on the vapours. Finally, it must be stated that $P_{\mathrm{E}+\mathrm{A}}$ has been taken as 5% greater than $\left[R_{L}\right]_{\mathrm{D}}$ because this gives very closely the known value of $P_{\mathrm{E}_{+\mathrm{A}}}$ in the case of carbon tetrachloride, but it is evident that uncertainty regarding the value of P_{A}, and, indeed, the probability that both P_{E} and P_{A} vary with the dielectric constant of the mixture, must undoubtedly be a source of error in the values of μ from both vapour and solution data.

Experimental.

Density, dielectric constant, and temperature were measured as previously described (Goss, J., 1933, 1343; 1935, 730).*

Purification of Materials.-Carbon tetrachloride. An 'AnalaR' sample was fractionally distilled, and the middle portion collected. It was dried over calcium chloride and again fractionally distilled. The middle fraction had a b. p. range of less than $0 \cdot 1^{\circ}$.

Chlorobenzene. This was shaken with dilute suIphuric acid, washed with sodium hydroxide solution and distilled water, dried over calcium chloride, and fractionally distilled. The middle fraction boiled at constant temperature.

Ethyl benzoate. This was washed with sodium carbonate solution, shaken several times with distilled water, and dried over potassium carbonate. A final purification was effected by fractionation under reduced pressure and separation of the middle fraction.

[^0]
1920 Macpherson and Percival: Investigations on the Configuration of

Results.-The experimental data and the polarisations (P_{12}) calculated therefrom are recorded in Table lII.

Table III.

c_{2}.	$\stackrel{\text { Chlo }}{ }$		P_{12}.	c_{2}.	${ }_{\text {E.thyl }}$	d_{40}^{20} a ate.	P_{12}.
0.00000	$2 \cdot 2324$	1.5942	$28 \cdot 10$	0.00000	$2 \cdot 2348$	1.5940	$28 \cdot 14$
0.00806	$2 \cdot 2593$	1-5901	28.54	0.00645	$2 \cdot 2685$	1.5890	28.76
0.01531	$2 \cdot 2849$	1.5865	28.96	0.01351	$2 \cdot 3039$	1.5832	$29 \cdot 43$
0.03142	$2 \cdot 3371$	1.5782	29.80	0.03413	$2 \cdot 4069$	$1 \cdot 5669$	$31 \cdot 32$
0.04812	$2 \cdot 3917$	1-5699	$30 \cdot 65$	0.05252	$2 \cdot 5020$	$1 \cdot 5526$	33.01
0.08478	$2 \cdot 5142$	1.5515	32.50	0.06868	$2 \cdot 5828$	$1 \cdot 5404$	$34 \cdot 43$
$0 \cdot 18906$	2.8640	1.4978	37.36	0.10835	$2 \cdot 7811$	1.5107	$37 \cdot 83$
0.47942	3.8257	$1 \cdot 3544$	48.00	0.18000	$3 \cdot 0935$	$1 \cdot 4600$	$43 \cdot 12$
0.89470	$5 \cdot 2867$	$1 \cdot 1557$	$59 \cdot 49$	$0 \cdot 41006$	$4 \cdot 0944$	$1 \cdot 3173$	$58 \cdot 17$
1.00000	5.6483	1-1063	61.81	$0 \cdot 67061$	$5 \cdot 0516$	1-1800	73.69
				$1 \cdot 00000$	6.0171	1.0463	89.78

The author's thanks are due to the Chemical Socicty for a grant.

[^0]: * The method of calibrating the condenser, there attributed to I'iekara (Bull. Acad. Polonaise, 1933. $A, 305$), had previously been described by Smith (Proc. Roy. Soc., 1932, A, 136, 251).

