402. The Magnitude of the Solvent Effect in Dipole-moment Measurements. Part I. The Polarisation of Carbon Tetrachloride Solutions.

By F. R. Goss.

The dielectric polarisation of polar substances in solution is known to differ from the same polarisation measured in the vapour state by amounts which are described in general as "solvent effects." It is already known that these are connected with the electrical anisotropy of the solvent, the concentration, anisotropy, and degree of association of the solute, and any chemical reaction which may occur between solvent and solute.

It is now shown that for certain solutions of polar substances in the isotropic solvent, carbon tetrachloride, the variation in the partial molar polarisations (P_s) , obtained by the method of intercepts from the polarisations (P_{12}) of the mixtures, can be expressed as a function of the dielectric constant ε in the form

$$P_{\mathbf{s}} = P_{\mathbf{E}+\mathbf{A}} + Z(\varepsilon - 1)^4/(\varepsilon + 2)^4 + Y/\varepsilon$$

Here Y and Z are molar quantities whose ratios $(Y/P_0 \text{ and } Z/P_{\mathbf{E}+\mathbf{A}})$ to the orientation and to the distortion polarisations respectively are, in the same way as $(P_{\infty} - P_{\mathbf{E}+\mathbf{A}})/P_0$, a measure of the modification of the magnitude of the polarisation by the anisotropy. These quantities are found to be related by the formula

$$(Y/P_0 - 1)/[\sqrt[4]{(Z + P_{E+A})/P_{E+A}} - 1] = 3.25$$

by means of which the solvent effects due to anisotropy and change of concentration may readily be defined and calculated.

Values for the dipole moment obtained by means of these formulæ from suitable experimental data are in satisfactory agreement with those given by the vapour measurements.

FOLLOWING the successful interpretation (J., 1933, 1341) of the temperature variation of the polarisation of certain non-polar liquids in terms of dielectric anisotropy, an attempt was made (J., 1934, 696, 1467) to find a theoretical basis for Sugden's relation (*Nature*, 1934, 133, 415)

$$P_2 = P_{E+A+O} + \alpha - P_O(\varepsilon - 1)/(\varepsilon + 2).$$
 (1)

for the dielectric polarisation P_2 of one component of a liquid mixture in terms of the total and the orientation polarisation, $P_{\mathbf{E}+\mathbf{A}+\mathbf{O}}$ and $P_{\mathbf{O}}$, of the same substance in the state of vapour, and the dielectric constant of the mixture, the term α being obtained experimentally. This simple formula was found to require modification (cf. J., 1935, 502) when applied to mixtures of carbon tetrachloride and nitrobenzene [an example chosen both for the isotropic nature of the non-polar solvent (cf. J., 1935, 727) and for the wide range covered by the values of ε in this case]. It was found that a close approximation to the experimental data is given by the expression

$$P_2 = P_{\mathbf{E}+\mathbf{A}+\mathbf{O}} - B\{(\epsilon - 1)/(\epsilon + 2) + (\epsilon - 1)^2/(\epsilon + 2)^2\} \quad . \quad . \quad (2)$$

Unfortunately (1) and (2) are not generally applicable to mixtures of other liquids which have been examined, and it is evident that agreement between such formulæ and the data must be largely fortuitous because the values of P_2 are calculated on the quite arbitrary assumption, due in the first place to Debye (Marx, "Handbuch der Radiologie," 1925, **6**, **630**), that the polarisation P_1 of the other component is independent of the concentration c_2 . This assumption admittedly leads to the correct value for the polarisation P_{∞} of the solute at infinite dilution ($c_2 = 0$), although considerable uncertainty must necessarily be introduced into the extrapolation because of the arithmetical difficulty involved in employing the expression (3) at small values of c_2 .

On the other hand, the values of P_2 given by formula (3) for finite values of c_2 will be wrong to the extent that Debye's assumption of the invariability of P_1 is in error.

Orr and Butler (*Nature*, 1932, 130, 930) believe that the intercept method * gives the partial polarisations of the components of a mixture at all concentrations, and in this communication an attempt is made to interpret the intercepts (P_{s1} and P_{s2}) given by tangents to P_{12} curves at the axes where $c_2 = 0$ and 1 (see Fig. 1) in the expectation that they represent the partial polarisations more exactly than P_1 and P_2 obtained in the usually accepted manner.

As an example of the method, in Fig. 1 values of P_{12} for chlorobenzene (Table III) are plotted against c_2 , and it will be seen that the tangent at the point where $c_2 = 0.47942$, one of the experimental points, gives the intercepts of $P_{s1} = 33$ and $P_{s2} = 65$ as the partial polarisations of carbon tetrachloride and chlorobenzene respectively at this concentration, whereas by (3) the values are $P_1 = 28$ and $P_2 = 70$.

Now, it is undoubtedly true that, since the intercepts may be read with almost equal accuracy at all concentrations, P_{∞} , which is the intercept given by the tangent at the point where $c_2 = 0$, is obtainable more accurately and more readily than by extrapolation

* The author is greatly indebted to Dr. W. Wild, who directed his attention to the possible application of this method to the interpretation of polarisation data.

Polarisation of chlorobenzene and carbon tetrachloride at 20°.

Partial molar polarisations at $20^{\circ} P_{\rm B} = P_{\rm E+A} + Z(\epsilon - 1)^4/(\epsilon + 2)^4 + Y/\epsilon$ extrapolated to $\epsilon = 1$ and $\epsilon = \infty$.

1917

of P_2 . Further, it will be seen from the data given in Table I that the intercepts obtained from mixtures of carbon tetrachloride with several polar substances, each component being considered independently, can be expressed as a function of the dielectric constant:

The values of P_s given by (4), which are also given in Fig. 2, are seen to coincide with the actual intercepts except for minor deviations in the case of the higher concentrations of ethyl ether, nitrobenzene, and carbon tetrachloride; in the other four cases agreement is exact.

TABLE I.

$t = 20^{\circ}.$									
		_	$P_{\mathbf{8_2}}$ [calc.			_	$P_{8_{2}}$ [calc.		
c ₂ .	$P_{\mathfrak{s}_2}.$	$P_{8_{1}}$.	by (4)].	c ₂ .	$P_{8_{2}}$.	P_{81} .	by (4)].		
Nitrobenzene	e (Pal, Phil.	Mag., 19	30, 10 , 265);	Chlorobenzene (see Table 111);					
[R]	$[R_L]_{\rm D} = 32.7$; $P_{\rm E+A} = 34.3$.				$[R_L]_{\rm D} = 31.2; P_{\rm E+A} = 32.8.$				
0.00000	365	28.0	365	0.00000	85	$28 \cdot 1$	85		
0.00985	337	28.1	337	0.00806	84	$28 \cdot 1$	84		
0.02101	311	28.6	310	0.01531	83	28.1	83		
0.03193	290	29.2	288	0.03145	82	28.2	82		
0.04686	264	30.4	263	0.04812	81	$28 \cdot 2$	81		
0.07064	232	32.5	231	0.08478	79	$28 \cdot 2$	79		
0.09586	205	35	205	0.18906	74	29	74		
0.1527	167	41	168	0.47942	65	33	66		
0.5098	143	47	144	0.89470	62	39	62		
0.3103	119	54	124	1.00000	61.8	40	61.8		
0.4039	109	59	112						
0.5001	103	64	105	Acetone (Earp and Glasstone, J., 1935, 1720);					
0.5917	99	68	102	[R]	$[]_{D} := 16.1;$	$P_{\mathbf{E}:\mathbf{A}} = 10$	5 ∙9.		
0.7166	96	72	98	0.00000	188	28.3	188		
0.8046	95	75	97	0.04186	161	29	161		
0.8936	94.7	78	95	0.09496	136	$\overline{31}$	136		
1.0000	94.5	80	94.5	0.20665	104	36	104		
					82	46	81		
	Ethyl benzoate (see Table III);				70	54	70		
$[R_L]$	$]_{\mathbf{D}}=42.6;$	$P_{\mathbf{E};\mathbf{A}} = 44$	ŀ7.	0·57880 0·75685	66	61	66		
0.00000	124	28.1	124	0.89866	64	66	64		
0.00645	123	28.1	123	0.97431	64	68	64		
0.01351	122	28.1	122	1.00000	63.9	68	63.9		
0.03413	119	28.2	119						
0.05252	116	28.4	116	Ethyl ether (Earp and Glasstone, J., 1935,					
0.06868	114	28.5	114	$(1709); [R_L]_D = 22.5; P_{E+A} = 23.6.$					
0.10835	109	29	110	0.00000	62	28.3	62		
0.18000	103	30	104	0.03862	61	28.3	61		
0.41006	94	34	94	0.06053	60	28.4	60		
0.67061	91	38	91	0.11003	59	28.5	59		
1.00000	89.8	42	89.8	0.15809	58.5	28.6	58.5		
				0.20399	57.7	28.7	57.7		
Methylene chloride (Morgan and Lowry, J.				0.26413	57.2	28.8	56.8		
Physical Chem., 1930, 34, 2385);				0.32161	56.8	29.0	56.0		
$[R_L]_D = 16.3; P_{E,A} = 17.1.$				0.44406	56.2	29.4	54.9		
0.00000	70	$28 \cdot 2$	70	0.48548	56·1	29.5	54.6		
0.25000	57	30	57	0.58144	55.7	30	54·1		
1.00000	46.8	53	46.8	0.70024	55.3	31	54.0		
				0.81740	55.0	33	54.1		
				0.90979	54.8	34	54.4		
				1.00000	54.7	35	54.7		

The values of Z and Y for the seven substances investigated are given in Table II, and it will be seen that they are the intercepts (less P_{E+A}) given by expression (4) on the $P_{\rm S}$ axis where $\varepsilon = \infty$ and I, or, more conveniently for graphical representation, where $1/\varepsilon = 0$ and I. For carbon tetrachloride, Y = 0, and it follows that $Z(\varepsilon - 1)^4/(\varepsilon - 2)^4$ is an additional term in the distortion polarisation of the liquids involved in these solutions, and hence that Y/ε is their orientation polarisation. When $\varepsilon = \varepsilon_1$ (ε_1 being the dielectric constant of the non-polar component) and $P_{\rm S} = P_{\infty}$, as in the infinitely dilute solution, or, for carbon tetrachloride, as in the pure liquid (here $P_{\rm s} = P_{\rm 1}$), the second term of the expression (4) is negligible, so that

Further examination of the data shows that within the limits of experimental error

$$(Y/P_{\rm O}-1)/[\sqrt[4]{(Z+P_{\rm E+A})/P_{\rm E+A}}-1] = 3.25$$
 (6)

Even in the case of carbon tetrachloride, where both Y and P are zero, this ratio can be calculated by making use of the relation between $(P_{\infty} - P_{E+A})/P_0$ and molecular symmetry elaborated by Higasi (*Sci. Papers Inst. Phys. Chem. Res. Tokyo*, 1936, 28, 284), from which it may be assumed that for an isotropic substance such as carbon tetrachloride, although both sides of the expression are zero, yet in the limit $P_{\infty} - P_{E+A} = P_0$ and hence from (5), $Y/P_0 = \varepsilon_1$. Moreover, it follows from (5) that Y/P_0 is very nearly ε_1 times the ratio $(P - P_{E+A})/P_0$, which Higasi found to be connected with the relationship between the direction of the dipole and the direction and magnitude of the molecular axes. Thus $Y/\varepsilon_1 P_0$ and Z/P_{E+A} , which are listed in Table II, express the extent to which the orientation and the distortion polarisation respectively are modified by induction.

TABLE II.

$$t = 20^{\circ}.$$

			Value	7.	Y	μ [calc.	μ
	Ζ.	Y.	of (6).	$\overline{P}_{\mathbf{E}+\mathbf{A}}$	$\epsilon_1 P_0$	by (7)].	(vapour).
Nitrobenzene	56	733	3.49	1.62	0.84	4.30	4.23
Chlorobenzene	64	115	2.93	1.95	0.90	1.65	1.69
Ethyl benzoate	104	176	3.54	2.32	0.94	1.99	1.95
Carbon tetrachloride	72	0	3.25	$2 \cdot 61$	1.00	0	0
Acetone	50	383	3.08	2.98	1.05	2.79	2.84
Methylene chloride	59	118	3.04	3.42	1.11	1.50	1.53
Ethyl ether	154	84	3.08	6.51	1.40	1.13	1.14

 P_0 in (6) (col. 4) is the vapour value taken from the literature.

 P_0 in col. 6 is calculated by expression (7).

* This ratio is approximately the same as $(P_{\infty} - P_{E+A})/P_0$.

From the relation (6) it follows that

whence the moment may be calculated in the usual manner. The values obtained are included in Table II with the comparable moments obtained from measurements on the vapours. Finally, it must be stated that $P_{\mathbf{E}+\mathbf{A}}$ has been taken as 5% greater than $[R_L]_D$ because this gives very closely the known value of $P_{\mathbf{E}+\mathbf{A}}$ in the case of carbon tetrachloride, but it is evident that uncertainty regarding the value of $P_{\mathbf{A}}$, and, indeed, the probability that both $P_{\mathbf{E}}$ and $P_{\mathbf{A}}$ vary with the dielectric constant of the mixture, must undoubtedly be a source of error in the values of μ from both vapour and solution data.

EXPERIMENTAL.

Density, dielectric constant, and temperature were measured as previously described (Goss, J., 1933, 1343; 1935, 730).*

Purification of Materials.—Carbon tetrachloride. An 'AnalaR' sample was fractionally distilled, and the middle portion collected. It was dried over calcium chloride and again fractionally distilled. The middle fraction had a b. p. range of less than 0.1° .

Chlorobenzene. This was shaken with dilute sulphuric acid, washed with sodium hydroxide solution and distilled water, dried over calcium chloride, and fractionally distilled. The middle fraction boiled at constant temperature.

Ethyl benzoate. This was washed with sodium carbonate solution, shaken several times with distilled water, and dried over potassium carbonate. A final purification was effected by fractionation under reduced pressure and separation of the middle fraction.

* The method of calibrating the condenser, there attributed to Piekara (Bull. Acad. Polonaise, 1933, A, 305), had previously been described by Smith (Proc. Roy. Soc., 1932, A, **136**, 251).

Results.—The experimental data and the polarisations (P_{12}) calculated therefrom are recorded in Table III.

TABLE III.								
c ₂ .	€.	$d_{4^{\circ}}^{20^{\circ}}$.	P ₁₂ .	c ₂ .	ε.	$d_{4^{\circ}}^{20^{\circ}}$.	P ₁₂ .	
Chlorobenzene.				Ethyl benzoate.				
0.00000	$2 \cdot 2324$	1.5942	28.10	0.00000	$2 \cdot 2348$	1.5940	28.14	
0.00806	$2 \cdot 2593$	1.5901	28.54	0.00645	2.2685	1.5890	28.76	
0.01531	$2 \cdot 2849$	1.5865	28.96	0.01321	$2 \cdot 3039$	1.5832	29.43	
0.03142	2.3371	1.5782	29.80	0.03413	$2 \cdot 4069$	1.5669	31.32	
0.04812	2.3917	1.5699	30.65	0.05252	2.5020	1.5526	33.01	
0.08478	2.5142	1.5515	32.50	0.06868	2.5828	1.5404	34.43	
0.18906	2.8640	1.4978	37.36	0.10835	2.7811	1.5107	$37 \cdot 83$	
0.47942	3.8257	1.3544	48 .00	0.18000	3.0935	1.4600	43.12	
0.89470	5.2867	1.1557	59.49	0.41006	4.0944	1.3173	58.17	
1.00000	5.6483	1.1063	61.81	0.67061	5.0516	1.1800	73.69	
				1.00000	6.0171	1.0463	89.78	

The author's thanks are due to the Chemical Society for a grant.

THE UNIVERSITY, LEEDS, 2.

[Received, July 3rd, 1937.]